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April 2017 – July 2020 (…)

Infographic: http://www.floodcitisense.eu/

Website: http://www.floodcitisense.eu/main

Project Objective

http://www.floodcitisense.eu/
http://www.floodcitisense.eu/main
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EU ERA-NET Smart Urban Futures Call

New dynamics of public services

• Innovative approaches to increase the capacity of urban 

areas to answer local challenges

• Interdisciplinary research and collaboration

• Encouraging involvement of civil society, thus bridging gaps 

between research disciplines, citizens and decision makers, 

cities and consumers

Project Funding
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Partnership & Pilot Cities

• Free University of Brussels

• Etat Généraux de l’Eau à 

Bruxelles

• Brussels City

• TU Delft

• Disdrometrics

• Rotterdam City

• International Institute for 

Applied Systems Analysis

• National Taipei University of 

Technology
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Working Steps

Selly Park South Flood 
Action Group & Interested 

citizens

Led by 
• SMIT institute of Imec

(Studies in Media, 
Innovation and Technology) 
(BE)

• Local Government 
Information Unit (UK)

Following protocols for UX 
design and methods widely 
used in social sciences to 
assess tech uptake / 
acceptance in urban living labs

Engagement workshops held 
throughout all working steps

1. Stakeholder analysis and engagement 
– understanding needs & tool co-creation
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Working Steps

2. Urban Living Labs (ULL) – Data collection 
through app & low-cost rainfall sensors

1. Stakeholder analysis and engagement
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Mobile App
• Dev by IIASA
• Available on App 

Store & Google 
Play

• 1yr post-project 
support

https://vimeo.com/462610371


Rainfall data & report visualisation in app

https://vimeo.com/462610371
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Web platform for flood report & rain data visualisation

Still being refined

http://18.220.58.67/fcs/Incident.html
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Piezoelectric low-cost sensors
• Supplied by Disdrometrics (NL)
• Assembled by citizens
• Solar battery powered
• LoRa transmission
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Back-end

• OGC Sensor Observation Service 

server implementation

• Written in Python, PostgreSQL DB

• User friendly interface

• Rich feature collection to easily 

manage time series data (APIs, 

aggregation fxns, etc)
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• Stakeholder engagement from the start was key and local stakeholders 

(inc. citizens) helped co-create the solution (all functionalities were 

discussed), evaluate the solution and collect data.

• Some concerns raised by stakeholders which shaped the ULL 

implementation include:

✓ Safety first: ‘missions or journeys’ (proactively asking app users to 

report on flooding) not implemented over safety concerns 

✓ Data protection: besides personal data handling, concerns expressed 

over photos uploaded as part of flood reports, exact location of rainfall 

sensor not shown

✓ Managing expectations is key: what happens after report is 

uploaded (concern from users and BCC side)

✓ What if the system (app) is sabotaged? – potential implementation 

of ‘expert users’ who can validate reports

✓ Access to smart phones limited in some age groups – hence need 

for website

Stakeholders shaped the ULL
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Assessments were carried out throughout the ULL implementation – some 

key results following sensor-building workshop include:

• Workshops attended by a cross section of ages

• 40% of group had experienced flooding

• 90% of participants agreed and strongly agreed that they had learned 

new things

• 80% agreed that they felt empowered to use sensor and mobile app

• Everyone agreed that the FCS project will allow citizens to help 

researchers in sharing information about floods

• Willingness to use tools: 90% agreed to use the mobile app for 

reporting urban floods

• 70% agreed that they had a better understanding of flooding in their 

area

Urban Living Lab Evaluation
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Working Steps

Focus of this 
presentation

2. Urban Living Labs – Data collection 
through app & low-cost rainfall sensors

3. Data-driven flood forecasting model

1. Stakeholder analysis and engagement
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Working Steps

2. Urban Living Labs – Data collection 
through app & low-cost rainfall sensors

3. Data-driven flood forecasting model

1. Stakeholder analysis and engagement

4. Operational implementation & testing 
of flood early warning system (EWS)

@ Birmingham: 
• Only proof of concept – including visualisation of predicted flooding on website
• BCC not ready to use EWS, but may use flood reporting data in hindcast (S19)
• Performance needs to be better understood before system is deployed operationally
• Integration of FCS solutions with existing systems also key to enable effective use
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Summary - Main Deliverables

1. Mobile app for flood reporting 
by citizens

2. Network of rainfall sensors 
across urban living labs

3. Platform for rainfall data and 
flood report visualisation 

4. Data-driven urban (pluvial) 
flood forecasting model – proof 
of concept (not operational)



Data driven flood prediction 
at Birmingham Pilot
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• Three main types of flood forecasting systems (FFS):

A. Empirical warning thresholds (e.g. rainfall 

thresholds supplemented by antecedent rain)

B. Pre-simulated scenario (data-driven)

C. RT hydraulic simulation

Why a data-driven model?

Model 
Type

Implementation 
Cost

Operational 
Cost

Other Features

A Low Low • Based on catchment knowledge
• Spatial variability of thresholds not 

accounted for

B High Low • Model re-training needed following 
catchment changes

C High High • Hydraulic model must comply with RT 
requirements (short runtimes, etc)

• Intermediate 
complexity & 
cost

• Low operational 
cost make it 
suitable for LLFAs

Ochoa-Rodríguez, S. et al (2018). Surface water flood warnings in England: overview, assessment and recommendations based on survey 

responses and workshops. Journal of Flood Risk Management, 11.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfr3.12195
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• Machine learning-based, assuming rainfall 

forecast available and reliable

• Analogue system, including analogue 

weather and flood forecasting  

Two approaches were tested



Machine Learning Model

(assuming rainfall forecasting 
available)
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Storm events

Predicted Flood Map

Eigenface 

Model

Flood-

inducing

storm

Non-flood 

inducing

storm

Flood Spatial 

Distribution 

Model

Flood

2-Stage Prediction Model

STAGE 1: is upcoming storm flood-
inducing? (yes/no)

STAGE 2: for flood-inducing storms, 
predict spatial distribution of floods
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Dataset
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• ST & BCC flood records (compiled into a single 

dataset)

• (Flood records were later supplemented with 

simulated max depth flood maps)

Flood Records

Flood event

Start: 14/06/2016 1145hrs

End: 17/06/2016 1535hrs

Non-Flood event

Start: 12/01/2005 0900hrs

End: 13/01/2005 1400hrs



24

• Storm event separation & identification of 

runoff-generating events between 2005-2017 

based on WaPUG criteria @ Minworth RGs

• Each flood/non-flood event has a set of feature 

maps (in a 34 by 30 grid) derived from radar 

data

• A DB of flood (128) and non-flood (1511) rainfall 

events & associated features was created

Storm Event Features

Feature 

extraction

4 main feature maps

Rainfall radar maps from 

event start to end time
- Temporal resolution: 5 minutes

- Spatial resolution: 1km

Rainfall accumulation [mm]

Rainfall peak rate [mm/h]

a) 5-minute peak rate b) 1-hour peak rate

Maximum return period [yr]

Critical duration [min]
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Model Implementation 
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• Common algorithm used in Facial Recognition Systems

• Concept: 

✓ Create a database of images (Eigenfaces) which have undergone 

dimensionality reduction (PCA), while keeping main features

✓ Compare the test image with database images.

✓ Find the most similar database image based on the minimum 

Euclidean score.

✓ If the most similar database image is associated to a flood event, 

then the test event is a flood event.

Stage 1: Eigenface (flood/non-flood)

Discarded

Components

Eigenfaces

(retain 95% of 

information)
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Eigenface 

Image

Rainfall accumulation

a) 5-min peak rate

OR

b) 1-hr peak rate

Critical duration

Max return period

• 23 different Eigenface models were created, each 

considering a different combination of the rainfall 

feature maps to form the “facial image”. 

All 4 feature maps

3 out of 4 feature maps

2 out of 4 feature maps

1 out of 4 feature maps

Stage 1: Eigenface (flood/non-flood)



28

• Best Eigenface models have an accuracy of approximately 

70%.

• Best performing model: accumulation + 1h peak rate -> 72% 

accuracy

Stage 1: Eigenface - Results

• The critical 

duration is a 

poor 

predictor.
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Aim: predict flood occurrence at each 1kmx1km grid

Features (predictors) under consideration: 

Stage 2: Spatial Flood Distribution

Hierarchy of 

streams
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ML models under consideration:

• Logistic Regression (weighted combination of features)

• Artificial Neural Networks

• 6 types of Support Vector Machine (SVM) models

✓ Linear

✓ Quadratic (QSVM)

✓ Cubic (CSVM)

✓ Fine Gaussian (FGSVM)

✓ Medium Gaussian (MGSVM)

✓ Coarse Gaussian (CGSVM) 

Stage 2: Spatial Flood Distribution
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 Test Event True Flood Maps F6LR 

1 

  

9 

  

14 

  

18 

  

• Best performing model is Logistic 

Regression (F6LR)

• Good predictive ability for pluvial flood 

events with larger flood extent.

Stage 2 - Results

• Lower predictive ability for localised 

flooding events (potentially erroneously 

reported as hydraulic flooding?).

Test 
Event 

True Flood Maps F6LR Rainfall Accumulation 

4 

   

8 

   

12 

   

15 
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No flood

Flood

No distinct set of features that separate flood from non-

flood pixels.

Stage 2 – insights & challenges
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• Flood records may underrepresent flooding extent

• Some isolated flooding incidents may have been 

erroneously reported as hydraulic flooding

• Potential solution: use simulated flood extent instead of 

flood records to train data-driven model -> initial results 

show significant better performance of data-driven model

Limitations

Event True flood map Physical model flood map F6LR 

14 
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Use Deep Learning (Convolutional Neural 

Networks)

• CNN may better capture system performance and 

result in better predictive ability – CNNs are 

particularly well suited for image processing

• Initial testing undertaken, but results inconclusive

• Yet to figure out optimal way of applying CNN

Other potential improvements



Analogue flood prediction 
model

(Current weather forecast is matched to 
climatic conditions from historical 

catalogue. Then, the associated flood 
map is extracted – a fancy LOOKUP!)
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• Stage 1 - Rainfall nowcasting (0-

6h): NORA analogue-based forecasting tool, 

consisting of two layers:

✓ Layer 1: Identification of analogue 

mesoscale atmospheric conditions (120) 

✓ Layer 2: from radar images linked to 

atmospheric analogues, select 12 most 

similar to those currently observed 

(images initially vectorised)

✓ Effectively, an ensemble rainfall forecast 

is obtained

• Stage 2 - Selection of flooding 

map(s) associated to historical 

rainfall from catalogue
✓ A deterministic flood prediction is obtained 

by using the averaged response from 

twelve flood maps, where for each 

gridded area (1×1 Km), the median value 

is adopted used (assuming 12 flood maps 

are equiprobabilistic).

✓ A probabilistic flood prediction is obtained 

by generating a quantile-based flood map.

Forecasting Model Structure

Current Rain Map

Current mesoscale atmospheric 
conditions & 6h forecast DB of weather conditions 

DB of rainfall maps linked to 

analogue atmospheric conditions

120 analogue mesoscale atmospheric conditions

12 rainfall analogues (ensemble nowcast)

(Average) (Quantile 
based) 
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Key techniques: PCA-based dimensionality reduction, K nearest neighbour
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• Historical climate data: 

✓ ERA5 reanalysis data from ECMWF (free) @ 1h /0.25deg 

resolution (~17x28km) 

✓ This constitutes the ‘forcing’ in the rainfall forecasting model 

(i.e. climatic conditions which result in a given rainfall map)

• Historical rainfall data:

✓ KED merged radar-rain gauge records from 2005-2017 @ 

5min/1km resolution

• (Simulated) historical flooding response:

✓ Simulated max depth flood maps (IW + PondsimPro) for 

each of 157 flood-inducing storm events

Offline training database (historical)
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• Climate forecast: 

✓ US Global Forecasting System (GFS) available every 6h (@ 

00, 06, 12 and 18h UTC) @ 0.5° x 0.5° (~50 km)

✓ This avoids the need for Met Office rainfall forecast (£££)

• RT Met Office radar data assumed to be available

• RT rain gauge data at 15min resolution assumed to be 

available:

✓ Operationally, EA data is only available with some hours of 

delay, but it is assumed that RT RG data can become 

available either from citizen or ST sensors

Real-time (RT) data
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• Cross-assessment for each of 157 flooding events, by leaving one event out 

from training in each iteration and using it for evaluation

• Focus on spatial replication of flood/non-flood pattern – flood maps therefore 

converted to binary (flood/non-flood) maps

• Quantitative assessment undertaken following contingency table below

Evaluation

 

Flooding in 

Hydraulic(”true”) 

output 

Non-flooding in 

Hydraulic (“true”) 

output 

 

Flooding in 

Data-driven output 

True positives  

(TP) 

False positives 

(FP) 

Positive predictive rate (PPR) 

= TP/(TP+FP) 

Non-flooding in 

Data-driven output 

False negatives 

(FN) 

True negatives 

(TN) 

Negative predictive rate 

(NPR) = TN/(TN+FN) 

 
True positive rate 

(TPR) = TP/(TP+FN) 

True negative rate 

(TNR) = TN/(FP+TN) 

Accuracy (ACC) = 

(TN+TP)/(TP+TN+FN+FP) 

 

Proportion of correct predictions, out of all 
test events
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• Results

Evaluation

 True conditions  

P
r
e
d

ic
te

d
 c

o
n

d
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io
n

s 

True Positive: 

28.6% (14.3%~42.9%) 

Areas are correctly predicted as 

flooding 

False Positives: 

14.3% (0%~21.43%) 

Areas are incorrectly predicted as 

flooding area 

Positive Predictive Rate: 

63.6% (50%~75%) 

(63.6% of predicted flooding areas are truly 

flooding areas) 

False Negatives: 

0% (0%~7.1%) 

Flooding areas are incorrectly 

predicted as non-flooding area 

True Negatives: 

28.6% (28.6%~35.7%) 

Areas are correctly predicted as 

non-flood 

Negative Predictive Rate: 

99.9% (79.9%~99.9%) 

(99.99% of predicted non-flooding areas are truly 

non-flooding areas) 

 

True Positive Rate: 

85.7% (50.0%~99.9%) 

(85.7% truly flooding areas can be 

correctly predicted as flooding) 

True Negative Rate: 

75.0% (63.6%~99.9%) 

(75.0% truly non-flooding areas can 

be correctly predicted) 

Accuracy Rate: 

71.4% (57.1% ~ 78.6%) 

(The overall accuracy is 71.4%) 
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• Refine model using time-varying flood extent maps rather than final (max depth) 

maps only

• The proposed framework allows incorporation of data from low-cost rainfall 

sensors and citizen reports:

✓ Rainfall data could be incorporated as extra drift in the KED merging 

process

✓ Flooding reports could be used to add weights to analogue flood maps, 

rather than treating them as equiprobabilistic.

• Formal comparison of ML vs. analogue model not yet undertaken 

Future work



Flood Prediction at Other FCS 
Pilots
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• No hydraulic model available

• But: 

✓ Rainfall nowcasting readily available

✓ Flow monitoring at key locations 

available 

✓ 20yrs of flow and rainfall records 

available for model training

• Focus: forecasting of peak flow in 

response to rainfall (i.e. rainfall-runoff)

Brussels 

• Data-driven models under consideration: 

✓ Linear regression model

✓ Neural network 

✓ Multi-layer Perceptron

• Random Forest – best performing on accuracy and time needed to train the 

model. 

• Random Forest models implemented for 9 critical sub-catchments

✓ K Nearest Neighbours

✓ Support Vector Machines

✓ Random
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• 2h forecast horizon

• High correlation, but 

systematic underestimation 

of peak flows – potentially 

due to use of RG data (at 

coarse spatial resolution) for 

model training 

• Flood prediction accuracy 

(using flood threshold): 70%

• Future work:

✓ Re-train models with 

radar data

Brussels – Results & Future Work 
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• Review of ~38,000 

citizen reports 

about water 

nuisance (2008-

2017)

• Limited spatial data

• 20 reports on 

typical dry day

• Rainfall forecasts 

not available, so 

never intended for 

operational use

Rotterdam
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Rotterdam

Decision trees used to 
evaluate rainfall features 
likely to result in flooding

>20 reports = flood

Three different decision 
trees – e.g. daily rainfall, 
hourly maxima and 5-min 
peak rainfall used in model 
shown left (these max 
rainfall accumulations are 
computed at daily scale – so 
1h max observed in given 
day) 

Positive prediction rates 66-
74%, depending on decision 
tree
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Concluding Remarks
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• Example exercise (survey results) to identify FFS uses and 

requirements – Ochoa-Rodriguez et al. (2018)

Potential response of LLFAs to localized surface water flood warning 

of different probability of occurrence and lead time

Concluding remarks
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• For operational deployment:

✓ FFS objectives and requirements (considering resources and 

needs) need to be clearly identified

✓ All stakeholders (internal and external) should be included from 

onset – ideally in a co-creation framework. This will not only 

improve design, but also acceptability.

✓ Effective integration with other existing systems would help 

maximise benefit

Concluding remarks
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• Proof of concept: this work shows that current data, models and 

technology do enable implementation of data-driven flood forecasting 

models

• However, further testing is required to confirm system performance 

and fitness for purpose (e.g. are accuracy, uncertainty, lead time and 

spatial resolution enough to drive relevant actions? What actions could 

be implemented at different lead times and levels of uncertainty?)

Concluding remarks
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Questions?

Susana.Ochoa-Rodriguez@rainplusplus.com; Amy.Jones@rpsgroup.com; 
c.onof@imperial.ac.uk

mailto:Susana.Ochoa-Rodriguez@rainplusplus.com
mailto:Amy.Jones@rpsgroup.com
mailto:c.onof@imperial.ac.uk

